# Belle II 実験における $B^{0} \rightarrow J/\psi K^{*0}$ 崩壊を用いた フレーバータグの誤認率と $\Delta t$ 分解能の評価

奈良女子大学大学院 博士前期課程 数物科学専攻 物理学コース

高エネルギー物理学研究室

#### 楠戸 愛美

#### 目次

#### • 序論

- ・時間依存CP非保存の測定
- $B^0 \rightarrow J/\psi K^{*0}$ 崩壊の事象再構成
- ・ 識別によるフレーバー 誤認率の 測定
- Opposite flavor-Same flavor非対称度
   によるフレーバー誤認率の測定
- Δt分解能の評価

序論

- ビッグバン時に物質と反物質は同量生成されたと考えられているが、現在の宇宙は物質のみが 残存しており、この物質-反物質非対称性が生じた機構は未解明。
- ・宇宙がこの状態に至るために必要である条件の一つがCP非保存。CP変換を行ったとき物理量 に変化があれば、CP非保存な状態。



Belle II実験では稀過程のBメソン崩壊過程を測定し、新たなCP非保存を探索しようとしている。

#### Belle II 実験

SuperKEKB加速器とBelle II測定器による、高輝度のBファクトリー実験であり、2019年に本格的にデータ収集を開始した。 最終的にはBelle実験の50倍のデータ(50ab<sup>-1</sup>)を収集を目指している。

SuperKEKB 加速器: 2リングの、7 GeV の電子ビームと4 GeV の陽電子ビームを衝突 させる衝突型加速器。

Belle II 測定器

衝突点を覆うように以下の検出器が設置されている。

-崩壊点検出器
 - ピクセル検出器(PXD)
 - シリコンバーテックス検出器(SVD)
 - エアロゲルRICH検出器(ARICH)
 - 中央飛跡検出器(CDC)
 - **電磁カロリメータ(ECL)** - K<sub>L</sub>、μ粒子検出器(KLM)





#### <u>時間依存CP非保存の測定</u>



フレーバータグとフレーバー誤認率

CP非保存の測定では、フレーバータグが較正が重要。→フレーバー誤認率 w



2022/2/17

## Δtの再構成と分解能



 $\Delta t$ は崩壊点位置のビーム軸方向の差 $\Delta z$ から  $\Delta t = \Delta z / \beta \gamma c$ 

> $eta \gamma$ :非対称衝突によるY(4S)の実験室系におけるローレンツブースト c:光速

CP非保存の精密な測定において、崩壊点再構成した際の位置分解能の見積もりが必要。

崩壞点再構成

CDC で検出・再構成した荷電粒子の飛跡にVXDの ヒットを付け加えて、飛跡をもう一度再構成したものを もとにB メソンの崩壊点位置を求める。

本研究では $B^0 \rightarrow J/\psi K^{*0}(\rightarrow K^+\pi^-)$ 崩壊のMCシミュレー ションデータを用いた。  $B^0 \rightarrow J/\psi K^{*0}(\rightarrow K^+\pi^-)$ 崩壊は 崩壊分岐比は1.27 × 10<sup>-3</sup>と高いため、このモードを用い て崩壊点位置分解能を $\Delta t$ 分布から評価することが可能。

Δt 分解能の影響をBメソン寿命の値を抽出することで確認した。

## $B^0 \rightarrow J/\psi K^{*0}$ 崩壊の事象再構成

| 粒子                                                                                             | 検出した検出器と選別条件                                                                                                   | - 再構成する際、粒子の選別条件を左のように行った。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| μ, Κ, π                                                                                        | μ : KLMにて検出<br>K,π : SVD,CDCで検出<br>TOPやARICHで識別                                                                | - 不変質量とエネルギー差は以下で表される。<br>$M_{hc} = E_{hcm}^2 - p_{hc}^2 \qquad AE = E_{hcm} - E_{hcm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $J/\psi(\mu\mu)$                                                                               | $3.05  GeV/c^2 < M(\mu\mu) < 3.15  GeV/c^2$                                                                    | $\sqrt{\frac{1}{1}} \frac{1}{1} \frac$ |
| <i>K</i> *0                                                                                    | $0.817  GeV/c^2 < M(K\pi) < 0.967  GeV/c^2$                                                                    | $E_{beam}$ : ビームエネルキー<br>$E_B$ : Y(4S)静止系でのB候補のエネルギー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B <sup>0</sup>                                                                                 | $\begin{array}{l} 5.29 \ GeV/c^2 < M_{bc} < 5.29 \ GeV/c^2 \ , \\ -0.03 GeV < \Delta E < 0.03 GeV \end{array}$ | $p_B$ : Y(4S)静止系でのB候補の運動量の大きさ<br>- 信号事象は $M_{bc}$ :5.279GeV, $\Delta E$ :0GeVでピーク                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Entries/0.0005GeV/c <sup>2</sup><br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10 | Entries 325<br>Mean 5.2<br>Std Dev 0.0048                                                                      | $\begin{array}{c} 93\\ 79\\ 29\\ 1400\\ 93\\ 1200\\ 90\\ 90\\ 90\\ 1200\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





タグ側のBメソンの娘粒子から荷電粒子の種類、電荷、運動量によりフレーバーを判別し、qとr の積で返される。

q: $B^0 \geq \overline{B^0}$ を識別を表す。q = 1であれば $B^0$ 、q = -1であれば $\overline{B^0}$ r: フレーバー希釈係数。0<r<1の範囲でフレーバーが確かに識別できているかを表す。

フレーバータグの性能を向上するのに、フレーバータグの効率 ε が高く、フレーバー誤認率 w が低くなるとよい。

識別結果からのフレーバー誤認率



修士論文発表\_kusudo

#### Effective tagging Efficiency



 $\varepsilon^{eff}$ はCP非保存を表すパラメータ、 $S_{f_{CP}}$ や $A_{f_{CP}}$ の誤差の逆数に比例する値。

→高いと誤差が小さくなる。 CP非保存の測定において、確認しておきたい値。  $A_{CP}(\Delta t) = \frac{\Gamma(\bar{B}^{0}(\Delta t) \rightarrow f_{CP}) - \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}{\Gamma(\bar{B}^{0}(\Delta t) \rightarrow f_{CP}) + \Gamma(B^{0}(\Delta t) \rightarrow f_{CP})}$   $= S_{f_{CP}} \sin(\Delta m \Delta t) + A_{f_{CP}} \cos(\Delta m \Delta t)$ 

フレーバー希釈係数 r の値ごとにフレーバータグの効率やフレーバー誤認率が変化する。

適当な範囲で分けることによって総和のEffective Tagging Efficiencyが良くなる。

本研究では、フレーバー希釈係数 rの値を6つに分けた。





| 1 | r                 | ε <sub>l</sub>      | w <sub>l</sub>      | $\Delta w_l$         | $\varepsilon_l^{eff}$ |
|---|-------------------|---------------------|---------------------|----------------------|-----------------------|
| 1 | 0.100 < r < 0.250 | $0.1642 \pm 0.0012$ | $0.3927 \pm 0.0038$ | $+0.0237 \pm 0.0076$ | $0.0076 \pm 0.0004$   |
| 2 | 0.250 < r < 0.500 | $0.1963 \pm 0.0012$ | $0.2971 \pm 0.0032$ | $+0.0133 \pm 0.0065$ | $0.0323 \pm 0.0008$   |
| 3 | 0.500 < r < 0.625 | $0.1058 \pm 0.0010$ | $0.2081 \pm 0.0039$ | $+0.0308 \pm 0.0078$ | $0.0360 \pm 0.0008$   |
| 4 | 0.625 < r < 0.750 | $0.1154 \pm 0.0010$ | $0.1445 \pm 0.0032$ | $-0.0002 \pm 0.0065$ | $0.0584 \pm 0.0009$   |
| 5 | 0.750 < r < 0.875 | $0.0867 \pm 0.0009$ | $0.0885 \pm 0.0030$ | $-0.0090 \pm 0.0061$ | $0.0587 \pm 0.0009$   |
| 6 | 0.875 < r < 1.000 | $0.1423 \pm 0.0011$ | $0.0241 \pm 0.0013$ | $+0.0049 \pm 0.0026$ | $0.1289 \pm 0.0011$   |

 $B^0 \rightarrow J/\psi K^{*0}$  崩壊のEffective Tagging Efficiencyは、

$$\varepsilon^{eff} = \sum_{l=1}^{6} \varepsilon_{l}^{eff} = 0.3220 \pm 0.0020$$

#### 他の崩壊モードとの比較

終状態の粒子数が違ったり、flavor specific状態とCP固有状態の違いがあると、フレーバータ グが影響を受けるか調べた。

そのために  $B^0 \to K^+\pi^- \geq B^0 \to \pi^+\pi^-$ 、  $B^0 \to J/\psi K^0_s$ の3つの崩壊モードで  $B^0 \to J/\psi K^{*0}$  と同様に、  $\varepsilon$ , w,  $\Delta w$ ,  $\varepsilon^{eff}$ を調べた。(本発表では $\varepsilon^{eff}$ のみ言及する。)



#### Effective tagging efficiencyの比較



-  $B^0 \rightarrow J/\psi K^{*0}$ ,  $B^0 \rightarrow K^+\pi^-$ ,  $B^0 \rightarrow \pi^+\pi^-$ ,  $B^0 \rightarrow J/\psi K^0_S$ 崩壊のEffective Tagging Efficiencyをまとめた。

- これらの崩壊モードの最大の差は0.008。先行研究であるBelleの実データで較正したEffective Tagging Efficiencyの差異をみると、実データの量が1*ab*<sup>-1</sup>(2~3年後のデータ量)の範囲内では、顕 著に問題になる大きさではない。

#### <u>Opposite Flavor-Same Flavor</u> 非対称度時間発展

フレーバー誤認率はOpposite Flavor-Same Flavor 非対称度時間発展のフィットを行い、 1 – 2w を抽出することで得られる。

$$A_{OFSF} = \frac{R_{OF}(\Delta t) - R_{SF}(\Delta t)}{R_{OF}(\Delta t) + R_{SF}(\Delta t)}$$

 $= (1 - 2w)\cos(\Delta m_d \Delta t)$ 

 $R_{OF(SF)}$ : Opposite Flavor(Same Flavor)の事象数  $\Delta m_d$ : 中性Bメソンの2 つの質量固有状態の質量差



現時点でこの手法に問題がないか、Opposite Flavor-Same Flavorが正しく識別できている場合と、フレーバータグを適用して識別させた場合の1 – 2wを確認した。

2022/2/17

## 非対称性時間発展フィットによる結果

Opposite Flavor-Same Flavorが正しいフレーバーにより識 別できている場合と、フレーバータグを適用して識別させた 場合のOpposite Flavor-Same Flavor 非対称度時間発展 *A<sub>oFSF</sub>*(Δ*t*)分布を確認した。

- 正しいフレーバーを用いた場合
  - fit結果 : 1 2w = 0.9919 ± 0.0007

- ほぼ1と一致。

フレーバータグを適用した場合(r = 0.1 - 1.0のみの事象を用いる)

- fit結果 :  $1 2w = 0.5727 \pm 0.0028$
- この時のEffective Tagging Efficiencyを見ると、  $\epsilon^{eff} = \epsilon (1 - 2w)^2 = 0.3280 \pm 0.0023$
- 既に述べた $\Delta t$ によらない方法では  $\epsilon^{eff} = 0.3220 \pm 0.0020$
- 独立した2つの方法でチェックし、一致した結果を得た。





#### Δt 分解能



$$P(\Delta t) = \int R(\Delta t - \Delta t') exp(\frac{-|\Delta t|}{\tau_B}) d\Delta t'$$
  
Δt 分解能を定式化した  
分解能応答関数R
$$\Delta t : 再構成した\Delta t$$
  
 $\Delta t : MCデータにおける真の\Delta t$ 

本研究では再構成したΔt 分布からこの操作を行いBメソン寿命の値を抽出することで確認した。

hz

Entries

Mean

Std Dev

 $\chi^2$  / ndf

p0

p1

p2

**p**3

p4

p5

**p**6

p7

**p**8

2

-2

0

 $\Delta t \text{ residual} (= \Delta t - \Delta t') の分布$ 

176294

1.02

-0.05888

298.2/71

4785 ± 219.5

-0.1332 ± 0.0069

1.783e+04 ± 2.111e+02

0.9993 ± 0.0179

-0.0352 ± 0.0025

0.4554 ± 0.0046

0.09621± 0.02846

6

 $389 \pm 19.6$ 

2.787 ± 0.040

#### Δt 分解能



| $-\Delta t') = h_1 \exp(-\Delta t')$ | $p(\frac{(x-\mu_1)^2}{2\sigma_1^2})$ | $+ h_2 \exp(+ h_3 \exp(- h_3 \exp(h_3 h_3))h_3)h_3)h_3)h_3)h_3)h_3)h$ | $\frac{(x - \mu_2)^2}{2\sigma_2^2})$ $p(\frac{(x - \mu_3)^2}{2\sigma_3^2})$ | 12000<br>10000<br>8000<br>6000<br>4000<br>2000 |
|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|
|                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                                |

| 添字 | h               | μ                    | σ                   |
|----|-----------------|----------------------|---------------------|
| 1  | $4785 \pm 220$  | $-0.1332 \pm 0.0070$ | $0.999 \pm 0.018$   |
| 2  | $17873 \pm 221$ | $-0.0352 \pm 0.0025$ | $0.4555 \pm 0.0047$ |
| 3  | $389 \pm 2$     | $0.096 \pm 0.029$    | $2.787 \pm 0.012$   |

 $\Delta t$ 分布とフィット結果



$$P(\Delta t) = \int R(\Delta t - \Delta t') exp(\frac{-|\Delta t|}{\tau_B}) d\Delta t'$$

Δtの分布(点)に前スライドで得た分解能
 応答関数と指数関数を畳みこませた確率
 密度関数ををunbinned likelihood fitで
 フィットした(青線)。

抽出された $B^0$ の寿命  $\tau_{B^0} = 1.532 \pm 0.004$  ps MCの入力値  $\tau_{B^0} = 1.525$  psと一致。

#### まとめ

- ・本研究では、  $B^0$  → J/ $\psi$ K<sup>\*0</sup>崩壊のMC シミュレーションサンプルデータを用いてCP非保存の測定 に重要であるフレーバー誤認率とΔt の分解能の評価を行なった。
- ・崩壊時のB メソンが $B^0$ か $\overline{B^0}$ かを調べるフレーバータグの誤認率をそれぞれ $B^0$ と $\overline{B^0}$ のときのフレー バータグを行い、間違っている事象数を数えて、計算して求めた。Effective Tagging Efficiency は、  $\varepsilon^{eff} = 0.3220 \pm 0.0020$ となった。
- ・  $B^0 \rightarrow J/\psi K^{*0}$ 崩壊モードに対し、娘粒子の数が違う崩壊モードやCP 固有状態の崩壊モードでの Effective Tagging Efficiencyに違いが出ないかを調べた。その計算結果からモードごとの $\varepsilon^{eff}$ の 差異の最大は0.008で実データの統計量が1  $ab^{-1}$ ぐらいまでは、顕著に問題になる大きさではな いことがわかった。
- ・崩壊点位置の差から得た $\Delta$ tを用いて、Opposite Flavor-Same Flavor非対称度時間発展をフィットして1 2wを得たところ、時間積分した算出法や前述した $\varepsilon^{eff}$ と一致し、実験的なフレーバータグの導出に問題がないことがわかった。
- ・再構成した $\Delta$ tの分解能応答関数を3つの正規分布の重ね合わせで表現するモデルを使用して再構成した $\Delta$ t分布をフィットし、Bメソンの寿命  $\tau_B$ を抽出した。その結果  $\tau_B = 1.532 \pm 0.004$  ps を得て、MCシミュレーションの入力値と一致することがわかった。